Band Generalization of the Golub-Kahan Bidiagonalization, Generalized Jacobi Matrices, and the Core Problem

نویسندگان

  • Iveta Hnetynková
  • Martin Plesinger
  • Zdenek Strakos
چکیده

The concept of the core problem in total least squares (TLS) problems was introduced in [C. C. Paige and Z. Strakoš, SIAM J. Matrix Anal. Appl., 27, 2006, pp. 861–875]. It is based on orthogonal transformations such that the resulting problem decomposes into two independent parts, with one of the parts having trivial (zero) right-hand side and maximal dimensions, and the other part with nonzero right-hand side having minimal dimensions. Extension of this concept to the multiple right-hand sides case AX ≈ B in [I. Hnětynková, M. Plešinger, and Z. Strakoš, SIAM J. Matrix Anal. Appl., 34, 2013, pp. 917–931], which is highly nontrivial, is based on application of the singular value decomposition. In this paper we prove that the band generalization of the Golub– Kahan bidiagonalization proposed in this context by Å. Björck also yields the core problem. We introduce generalized Jacobi matrices and investigate their properties. They prove useful in further analysis of the core problem concept. This paper assumes exact arithmetic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Generalized Golub-Kahan Bidiagonalization and Stopping Criteria

The Golub–Kahan bidiagonalization algorithm has been widely used in solving leastsquares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub–Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes a...

متن کامل

A Golub-Kahan-Type Reduction Method for Matrix Pairs

We describe a novel method for reducing a pair of large matrices {A,B} to a pair of small matrices {H,K}. The method is an extension of Golub–Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large linear discrete ill-posed problems are described. In these problems the matrix A represents a disc...

متن کامل

Computation of Generalized Matrix Functions

We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra, 1(2), 1973, pp. 163–171]. Our algorithms are based on Gaussian quadrature and Golub–Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiven...

متن کامل

Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems

We consider the solution of large linear systems of equations that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015